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ABSTRACT 

In this paper the following two questions are studied: (1) When does an ideal I 
have the property that whenever A is a family of K sets there is a o--ideal which 
extends I and measures each element of A ? (2) When does an ideal I have the 
property that when A is a family of r sets there is a tr-ideal which extends I and 
measures at least A elements of A?  

The above questions are surprisingly ubiquitous in combinatorial set theory: 

polarized and other partition relations, saturation of ideals, Silver's principles, 

character of ultrafilters, HFDs,  independent sets are all intrinsically related to 
extendibility. The methods used in solving these questions are just as diverse: 

the core model, preservation of linguistic and other aspects of weak compactness 
under various forcing extensions, ZFC combinatorics, huge cardinals, Sacks, 
Mathias and other reals and more. 

We have restricted this paper in several ways: We have examined only "first 

order" and "second order" extendibility. Perhaps "third order" extendibility is 
even more interesting. We have also emphasized the relative consistency of 
extendibility with possible cardinal arithmetic. Perhaps there are interesting 

implications betweeen extendibilities and other axioms. The topics we have 
selected are only a basic framework for examining extendibility properties. 

Some definitions will help to simplify the rest of the discussion. If I is an ideal 
on X then ! measures A if and only if A is a subset of X and either A E I or 
X \ A  E I. The ideal I is K-extendible if and only if whenever A E [~(X)]"  there 

is a a-ideal (i.e. a countably complete ideal) extending I which measures each 

element of A. The ideal I is (r, ,~ )-extendible if and only if whenever A E 

[~(X)]  K there is A E [A ]* and there is a a-ideal extending I which measures 
each element of ,,~. 
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The questions examined in this paper can now be posed as follows: 

(1) When is an ideal K-extendible? 

(2) When is an ideal (K, A )-extendible? 

P a r t  O n e :  W h e n  is an  idea l  K - e x t e n d i b l e ?  

A definition simplifies the statement of the answer: l is K-completable if there 

is a K-complete ideal on X which contains L We shall show that the extendibility 

of an ideal is, in general, determined by its completability. 

First, we give a sufficient condition for K-extendibility. 

LEMMA 1. If I is (Ko)+-completable then I is K-extendible. 

PROOF. Assume, without loss of generality, that I is (K'°)÷-complete. Let 

{A, :tz < K} be a family of subsets of X. For each /1 < K, let A"~,= A ,  and 

A ~ = X - A , . L e t  

= , • { A ,  . t z E L } E 1 } .  N U { N { A t C " ) : / z E L }  L ~ [ K ] ' % a n d f : L - - , 2 a n d  D f(~). 

There are at most K ~ possible countable subsets L of K, and for each L at most 

2 ~ possible f : L --~ 2. Thus N is the union of a family of K ~ elements of I. Since I 

is (K~)+-complete, N is in the ideal and thus X - N  is nonempty. Choose 

a E X - N and define g : K ---)2 as follows: g(/z) = 0 if and only if a ff A,. Note 

that a E .-,A g(.) for each tz < K. 
I U { A .  :/x < K} It will now be shown that the countable completion of ~(") 

exists. Since I is countably complete it suffices to show that B U 
U fAg ' ) "  ( / ,, . p. E L } ) ¢  X whenever L E [K]"° and B E L Suppose, otherwise, that 

X g(~)" " - U {A,  ./z E L} E I. If f L --)2 is defined by f(/z)  = g(/z) + l(mod 2) then 
n {A t(~). ,, . l ~ E L } ~ I  and so N { A ~ " ) : I x C L } C N .  This implies that a E N  

which contradicts the choice of a. The lemma is proved. 

Second, we show that the sufficient condition of Lemma 1 is necessary for 

"small" cardinals. 

The definition of a ,=-cardinal, a pathological large cardinal, facilitates the 

description of the cardinals for which the sufficient condition of Lemma 1 may 

not be a necessary condition. 

K is a =_-cardinal whenever: 

(1) K is a regular limit cardinal greater than the continuum, 

(2) K is a weakly compact cardinal in L, 

(3) K cannot be obtained by nontrivial cardinal exponentiation (that is, there 

do not exist a,13 < K such that K = a ~), 

(4) K is not inaccessible. 
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A _=-cardinal has the same consistency strength as the existence of a weakly 

compact cardinal. 

LEMMA 2. If I is K-extendible then I is (K~)÷-completable unless K is greater 

than or equal to either a weakly compact cardinal or a =_-cardinal. 

PROOF. Suppose I fails to be (K~)+-completable. We construct a tree of 

height ~o. Each node consists of an ordered pair. The first coordinate is an 

indexed partition of X. The cardinality of the first coordinate therefore equals 

the cardinality of the index set. This allows the partitions to contain the empty 

set. The second coordinate is a family of at most K subsets of X. The first 

coordinate of the unique node at level 0 is a partition of X into {At : f E ~ K }  

where each A t is in I. The second coordinate of the node at level 0 is 

{ U { A r : f ( n ) =  # } : n  E oJ,/~ E K}, a family of at most K subsets of X. There  are 

countably many nodes at level 1. The first coordinate of the n th node at level 1 is 

{ U {At : f ( n )  =/~}:/~ < K}, a partition of X. The tree is defined by induction. If 

the first coordinate of a node has been defined, we define its second coordinate 

and the first coordinate of its successors (if there are any). The induction step at a 

node depends on the cardinality u of the first coordinate of the node. 

The induction begins at level 1 and the first coordinate of each node, except 

the node at level 0, has cardinality at most K. 

There are five possibilities for u _-< K: 

(1) v is a successor cardinal, 

(2) u is a singular cardinal, 

(3) there are a, fl < u such that u-< a ~ and either /3 = w or a ~ ==- K, 

(4) there is a ~,-Aronszajn tree, 

( 5 )  v = ,o .  

A u =< K may have more than one possibility. It does not matter  which set of 

instructions are applied. 

For the first four cases, a set-theoretic object is needed: 

(1) an Ulam matrix, 

(2) a singular chain, 

(3) a Cantor  tree, 

(4) an Aronszajn tree. 

Let the first coordinate of a node be {Be : a  < u}, a partition of X. 

Case 1. Let u = O+. Construct an Ulam matrix {uo~ :~r < o,~ < #} of subsets 

of u such that {Uo~ :~r < u} is a disjoint family for each r < p and {uo~ :~" < p} is a 

partition of u - o- for each ~ < u. Let the second coordinate of the node be 
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{ U {/3, : a E u~,} : o" < v, r < p}, a family of cardinality v =< K. The node has v 

successors. The orth successor, where o" < v, has first coordinate 

{U{Bo < p} U{Bo <or}, 

a partit ion of X of cardinality p + Ior I = P < v. 

Case 2. Let c f ( v )=  p. Construct a partit ion {u,,:or < p} of v such that 

I u~ I < v for each o- < p. Let the second coordinate of the node be { U {B,  : a 

u~}: or < p}, a family of cardinality p _<- v _-< K. The node has a successor for each 

or _-< p. The orth successor, where or < p, has first coordinate 

{Bo u }U{ U{B  

a partit ion of X of cardinality l u, I <  v. The pth successor has first coordinate 

{ U {B,  : ot E u~}: or < p} a partit ion of X of cardinality p < v. 

Case 3. Let a and/3 be less than v such that v _-< a ~ and let ~r : v--~/3, be an 

injection. Let the second coordinate of the node be 

{ u {B ,  : = or < / 3 ,  < 

a family of cardinality a +/3 < v _-< K. I f /3  is uncountable then the node has a 

successor for each f : /3 - *  a. There are a ~ such successors and a ~ _-< K. If f E "a 

then the successor corresponding to f has first coordinate 

{ U {B, : zr(~)r or = f ro-  and zr(~)(or) # / (o r ) }  : or < /3 }  U {B~ : ¢r(~) = f}.  

The node also has a successor for each ~r </3. The orth successor, where or </3, 

has first coordinate { U {B~ : 1r(~)(or) = r}:~" < a}. 

Case 4. Let (T, <~) be a tree of height v all of whose levels and branches have 

cardinality less than v and let ~r : v---* T be a bijection. Let  the second coordinate 

of the node be { U {B, : t<Tr (a )} :  t ~ T}. The node has v successors. T h e / 3 t h  

successor, for /3 < v, has first coordinate 

{ U {B, :t<]Tr(a)}:level(t) =/3} U {B~ :level (Tr(a)) =</3}, 

a partition of X of cardinality less than v. 

Case 5. Let the second coordinate of the node be the empty  set. The node 

has no successors. 

The cardinality of the first coordinate decreases as one moves up a branch in 

the tree and so there are no infinite branches. The tree is at most K-branching 

and so it has most K nodes. The cardinality of each second coordinate is at most 
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r. Let U be the union of the second coordinates of nodes in the tree. U is a 

family (of cardinality at most K) of subsets of X. By way of contradiction, 

suppose J is a ,r-ideal which contains I and measures each element  of U. 

To facilitate the exposition, let a small subset of X be a subset of X which is in 

J. 

We construct a branch of the tree by induction on level. This branch has the 

proper ty  that each node of the branch has a first coordinate which is a partition 

of X into small subsets of X. 

The node at level 0 has this property.  It will be shown that each node with a 

successor has a successor with this property.  

Case 1. For each o- < u and z < p the ideal J measures U {B~ : a E u,,T}. We 

show that there exists O'o < u such that { tO {B~ : a E U,o~} : ~- < p} is a family of 

small sets. Otherwise,  for each o r<  u, there is a ~- ( t r )<p such that 

U {Ba : a E u~,)} ~ J. There  must be tr~ < u and tr2 < u such that ~-(trt) = ~'(tr2). 

But u~,~,.,) is disjoint from u~2.~.2) and so U {B~ : a E u ~,.,~,)} and U {B~ : a E 

u~2.t~)} are disjoint elements  with small complement  which is a contradiction. 

Now the ~r0th successor has the desired proper ty  because its first coordinate is 

{U{Bo :~ ~ u,,o,}:~'<p}U{Bo :~ <~0}. 

But {B~ : a < o'0} C{B~ :a < u} and {B, : a E u} is a parti t ion of X into small sets 

by the induction hypothesis. Thus each element of the first coordinate of the ~roth 

successor is small as required. 

Case 2. For each tr < p the ideal J measures U {B~ : ,x E u~}. Suppose that 

there exists a o- < p such that U {B~ : a E u~} ~ J. To see that the trth successor 

has the proper ty  note that the first coordinate of the ,rth successor is 

{B,, :,~ ~ u~}O{ U{B,, : a ~  u~}}. 

However {B~ : a E u,,} is contained in {B~ : a < v} which is a parti t ion of X into 

small sets, by the induction hypothesis. 
Since U {B, : a ~  u~} = X - U {B~ : a  E u,,} and the set on the right is small by 

the hypothesis on J it follows that each element  of the first coordinate of the trth 

successor is small. If there does not exist tr < p such that U {Bo : a E u,,} t~ J, 

then, for each tr < p, U {B~ : a E u,,} is small. The first coordinate of the pth  

successor consists of these sets and so each element  of the first coordinate of the 

pth successor is small. 

Case 3. For each tr </3, the ideal J measures U {B~ : 7r(~)(~) = 7}. Define 
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f : f l - + a  as follows: f (a )=  r if and only if U{B e :,n'(~)(o.)= r } ~ J  for each 
o.</3. This definition is possible unless there is o .</3  such that 

U {Be : zr(~)(o.)= r} is small for each r < c~ and so each element of the first 

coordinate of the o.th successor is small as required. If fl is uncountable, then we 

shall show that the successor has the property. The first coordinate of the f th 

successor is 

{ U {Be : *r(~:)Io- = f[o. and 7r(~:)(o.) # f(o.)} : o. </3} U U {Be : zr (~:) = f}. 

Let o- </3. Then U {Be : ~-(~:)[,:r = fro" and (~)(~)o'# f(o.)} is contained in 

U {Be : zr(~)(o.)#/(or)}. If f(o') = r then U {Be : ~'(~)(o.) = r} ~ J and hence 

U{Be:vr(~)(o ')# r} is small. Also B,~-,~r ~ belongs to {Be :~j< v} which is a 

partition of X into small sets by the induction hypothesis. Hence each element of 

the first coordinate of the f th  successor is small as required. If/3 is countable, 

then {Be : 1r(~:) = f} U { U {Be : Ir(~)(o.) # f(o.)} : o. </3} is a countable partition 
of X into small sets and th i s  is a contradiction. 

Case 4. Now {B~ : t~ r r (a )}  is measured by J for each t ~ T. Suppose that 

{ U {Bo : t<~ ~(a)}:level  (t) =/3} consists of small sets for some/3 < v. To see that 

the /3th successor has the desired property, note that /3th successor has first 

coordinate 

{ U {B~ :t <1 zr(a )}:level (t) =/3} U {B,, :level (,r (a)) =</3 }. 

But {Ba : level (~'(a)) _---/3 } C {B,, : a < u}, and {B~ : a C u} is a partition of X into 

small sets by the induction hypothesis, If, then, for each/3 < v, there is a to at 

level /3 such that 

U{B~:t~<azr(ct)}~J, for each/3 < v, 

{ U {Bo : t<~Tr(a)}:level (t) =/3} does not consist of small sets. 

It will be shown if/3, < /32< v then t~<Jt~. Suppose not. Then t~ has some 

predecessor t* at level/3,. Clearly U {B~ : t*<~r(a)} D tO {B~ : t~<~Tr(a)} ~ J. If 

t* and t~, are distinct, then U {B~ : t*<~'(a)} and tO {B~ : t~,<llr(a)} are disjoint 

elements with small complements and that is the contradiction which proves the 

claim. Hence {to :/3 < v} is a branch in T of length v which contradicts the 

definition of T. 

We have examined the first four cases and so we have constructed a branch in 

the tree of height oJ. This branch has the property that the first coordinate of 

each of its nodes is a partition of X into small subsets of X. There are no infinite 

branches in the tree and so there is a highest node. By the construction of the 
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tree, either this node invoked case 5 or there is a cardinal less than K to which 

none of the five possibilities apply. If the former is true, then the first coordinate 

of this node is a countable partition of X into small subsets of X contradicting 

the countable completeness of Jr. If the latter is true, then this cardinal is either a 

B-cardinal or a weakly compact cardinal and the lemma is proved. If V -- L and 

K is any regular cardinal, then there is a K-Aronszajn tree unless K is weakly 

compact. This implies that, if K is regular, then there is a K-Aronszajn tree 

unless K is weakly compact in an inner model. 

Third, we show that, if K is equal to a weakly compact cardinal, the sufficient 

condition of Lemma 1 can be improved. 

LEMMA 3. If I is K-completable and K is weakly compact, then I is K- 

extendible. 

PROOF. Lemma 2.4 of [9] shows this lemma when the cardinality of X is K, 

but, in that proof, this assumption is not necessary. 

Fourth, we show that, unless there is a measurable cardinal in an inner model, 

the sufficient condition of Lemma 3 cannot be improved. 

LEMMA 4. I f  I is K-extendible and there are no measurable cardinals in an 

inner model, then I is K-completable. 

To facilitate the proof of Lemma 4, we state and prove a preliminary lemma: 

LEMMA 5. I f  there is a K +-extendible ideal on K, then there is a measurable 

cardinal in an inner model. 

PROOF. Let K be the core model of Dodd and Jensen [6]. K is a model of the 

generalized continuum hypothesis, and so I PK(K)I = (K+) K =< K +. If F is the dual 

of the K +-extendible ideal on K of the hypothesis of the lemma, let G ~ F be a 

countably complete filter of K which measures each of the subsets of K which are 

elements of K. Let M be the ultrapower (K~)K/G (thus elements of M are 

equivalence classes of functions f : K --~ K such that f ~ K). There is an elemen- 

tary embedding j : K ~  M since the fundamental theorem of ultraproducts holds 

for M. Since G is countably complete, M is well-founded and so there is an an 

isomorphism ~- : M ~  N where N is a transitive class. Then ¢r oj is an elementary 

embedding of K into a transitive class. By results of Dodd and Jensen, any 

elementary embedding of K into a transitive class is an elementary embedding 

of K into K, the covering lemma must fail for K and there must be a measurable 

cardinal in an inner model. 
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PROOF OF LEMMA 4. Suppose I is K-extendible but fails to be r-completable.  

I must fail to be Ix*-completable for some cardinal IX < r. I is, however, 

Ix +-extendible. Thus we can assume without loss of generality that K is a 

successor cardinal IX ÷. I fails to be IX ÷-completable and so there is a partition of 

the base set X into IX sets {A~ }~<, each of which is in I. Let 7r : X - ~  IX be defined 

by 7r(x)-- a if and only if x E A, .  { X -  ~ r " ( A ) : X -  A E I} is a Ix+-extendible 

ideal on IX and, by Lemma 5, we are done. 

Fifth, we use Lemma 4 to improve Lemma 2 under the assumption that there 

are no measurable cardinals in an inner model. 

LEMMA 6. I [ I  is K-extendible and there are no measurable cardinals in an 

inner model then I is (K~)+-completable unless r is equal to either a weakly 

compact cardinal or a =_-cardinal. 

PROOF. Construct a tree of height three by taking the first three levels of the 

tree of height to constructed in the proof of Lemma 2 and changing the second 

coordinate of the nodes of the third level. This is possible since the first inductive 

stage of the construction of the tree in the proof of Lemma 2 is possible unless K 

is equal to a weakly compact cardinal or a =_-cardinal. The first coordinate of 

each node of the third level is a partition {A,,},,<,, of the base set where IX < K. 

Let the second coordinate of this node be { t_/{A~ : a ~ X} : X C IX and X E K} 

where K is the core model. This set has cardinality (2") K = (IX+)K <= ix+ < K as 

required. As in the proof of Lemma 2, let J be a countably complete ideal which 

measures each element of the second coordinate of each node of the tree. As 

before, there must be a node of the third level whose first coordinate is a 

partition of the base set into small sets. Identifying these sets with points as in the 

proof of Lemma 4, we obtain a countably complete ideal which measures each 

subset of IX which is in K, and as in the proof of Lemma 5, there must be a 

measurable cardinal in an inner model. 

THEOREM |. I is K-extendible if and only if I is (K ~)+-completable unless r is 

greater than or equal to either a weakly compact cardinal or a =_-cardinal. 

PROOF. Lemma 1 and Lemma 2. 

COROLLARY. I is to-extendible if and only if I is (2"o)+-completable. 

THEOREM 2. I f  there are no measurable cardinals in an inner model and I is 

to-extendible, and r is not a =_-cardinal, then I is r-extendible if and only if 

(a) I is K-completable (r  weakly compact), 
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(b) I is r+-completable (r successor or r singular of uncountable cofinality or r 

regular limit but not weakly compact in L or r can be obtained by nontrivial 

cardinal exponentiation or r inaccessible but not weakly compact), 

(c) I is r++-completable (r singular of countable cofinality ). 

PROOF. (a) is shown by Lemma 2. 

By Lemma 6 and Lemma 1, under the hypothesis of this theorem, and when r 

is not weakly compact, I is K-extendible if and only if I is (r~)+-completable. If 

there are no measurable cardinals in an inner model, the singular cardinals 

hypothesis holds and the cardinal arithmetic simplifies so that if r has uncounta- 

ble cofinality ( r~ )+=(2~)+ . r+  and if r has countable cofinality ( r~)  += 

(2~) +. r ÷+. By Theorem 1, if I is ~o-extendible then I is (2~)+-completable and so 

the additional assumptions of (b) and (c) are sufficient (and necessary). 

_=-cardinals have the consistency strength of weakly compact cardinals and 

assuming a slightly greater consistency strength _=-cardinals can behave like 

weakly compact cardinals with respect to completability of ideals: 

THEOREM 3. Let r be a _=-cardinal and assume that there are no measurable 

cardinals in an inner model. 

(a) r+-completable implies r-extendible implies r-completable. 

(b) The existence o[ a K-extendible ideal which is not r+-completable is 

consistent with the axioms of set theory relative to the consistency of the existence of 

an ineffable cardinal. 

PROOF. (a) By Lemma 1 and Lemma 4 (r  is greater than the continuum). 

(b) By 2.1.3 of [4], if r is an ineffable cardinal, then adding r Cohen subsets of 
w~ yields a model of set theory where: 

(1) r is a _=-cardinal, 

(2) if E is a subset of LK, of cardinality r which has no model, then there is a E' 

of cardinality less than r contained in 22 which has no model. 

To see [r]  <~ is K-extendible let {As : a < r} be subsets of r. Let I be a unary 

predicate. Let 22 be the set of sentences which state that, for each a < r, As E I 

or r - As E l and that I is a K-complete ideal which contains [r]  <~. Each subset 

of E of cardinality less than r has a model since, by Lemma 1, [ r]  <K is 

A-extendible for each A < r. By (2), 22 has a model and the claim is proved. 

A natural question is: 

QUESTION 1. Does the consistency of the existence of an ineffable cardinal 

imply the consistency of the existence of a cardinal r which is not weakly 

compact such that each r-completable ideal is r-extendible? 
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QUESTION 2. Does the consistency of the existence of a weakly compact  

cardinal imply the consistency of the existence of a cardinal r which is not 

weakly compact  and a K-extendible ideal which is not K+-completable? 

If there are measurables in an inner model then extendibility can exceed 

completability: if K is measurable,  then there is a K+-extendible ideal which is 

not K*-completable; if K is compact,  then each K-completable ideal is K +- 

extendible. 

Boban Veli(zkovi6 has shown that these situations can occur even when r is 

not measurable or K is not compact (of course K is measurable in an inner 

model). 

PROPOSITION 1. I f  it is consistent that there is a supercompact  cardinal, then it is 

consistent that there is a cardinal K which is not measurable and a K-completable 

ideal on K which is K+-extendible. 

PROOF. (supplied by John Merrill). Let K be K+-supercompact. Use a 

reverse Easton forcing extension (i.e. an iteration) to add a + Cohen subsets of a 

to each strongly inaccessible a <_- r. Let this partial order be P. Let j : V--~ M be 

the ultrapower embedding and let j ( P ) = P * Q .  The least inaccessible in M 

greater  than K is greater  than K ++ (since M is closed under K + sequences) and so 

O is K++-closed. j can be extended to an elementary embedding i :  VP---~MJ(P~ 

(this is non-trivial: see p. 86 of [16]). Define an unltrafilter U on K in V jCP~ by 

A E U  iff KEj'(A). U is well-defined since A CK and A E V ~¢P~ implies 

A E V P (O is K+-closed). U is a K-complete ultrafilter on K by elementari ty 

because i is the identity on cardinals less than K. This shows that K is measurable 

in V j¢P~. By ~'~-reflection (see lemma 4 of [11]) and the K+-closure of O, K is also 

measurable in V P. Let R b e  the partial order adding K ++-Cohen subsets of K. In 

V ''R, K is not measurable (since G C H  holds at each inaccessible below K but not 

at K) but [K] ~ is K+-extendible. To see this, let {A~ : a  E K+}E V P'R be subsets 

of K. There is a S CR which adds K + Cohen subsets of K such that {A, : a  E 

K +} E V P's. The fact that P* S is isomorphic to P implies that K is measurable in 

V P's and so [K] <~ can be extended to a K-complete ultrafilter which measures 

{A, : a  E K+}. 

QUESTION 3. Does the consistency of the existence of a measurable cardinal 

imply the consistency of the existence of a cardinal K which is not measurable 

such that [K] <~ is K+-extendible? 

PROPOSITION 2 (Velickovic). I f  it is consistent that there is a supercompact  
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cardinal, then it is consistent that there is a cardinal r which is not compact such 

that each r-completable ideal is r+-extendible. 

PROOF (supplied by John Merrill). Let r be a K-directed closed indestructi- 

ble supercompact  (see [15]). Let P = {E E [K++]-~K+: E consists of ordinals of 

countable cofinality and is nonstationary in each initial segment} ordered by 

end-extension. Let S be the union of the generic filter of P. In V", let 

O = {X E [r++] ='+ : X is closed and X fq S = •} ordered by end-extension. Let 

D = { (E ,X) : sup  E = max X}. We claim that D is a K-directed closed dense 

subset of P* Q. To see that D is K-directed closed, note that directed subsets of 

D are well-ordered and 

is a condition whenever {(E~,YCo)=c~EK} are conditions ( t_J{E~'c~EK} 

cannot be stationary in its supremum since O {X~ : e~ E K} is closed unbounded 

in that ordinal). We claim that in V P, K is not compact  (because r*+ has an 

E-set :  see [9] page 122) but that any K-complete ideal on K is r*-extendible.  To 

see this, let I E V P be a K-complete ideal on A and let {A, : ot @ K+} be subsets 

of A. Work in V P'° to get a f :  K+---~2 such that I t..J {A~ ~)" cz @ K +} generates a 

K-complete ideal. Q is K++-distributive so )r ~ V P. I tO {A t~) : a @ K +} must also 

generate a K-complete ideal in V P. 

Part Two: When is an ideal (r, A )-extendible? 

Section One: General results 

This is a complicated question and so, to get a perspective, we shall emphasize 

the ideals [/z]<L 

First, we present some monotonicity results. 

LEMMA 7. If F is (K,A )-extendible, then F' is (K',A')-extendible whenever 
Kt~> K, At<=A, F ' C F .  

LEMMA 8. Ijf [tt] <~ is (r,A)-extendible, then [/z'] <~' is (r,A)-extendible 
whenever g ' = g ,  r , ' ~  t,. 

Second, we shall demarcate  the parameters .  

LEMMA 9. If F is A-extendible, then F is (A, A)-extendible. 

LEMMA 10. [)f t, = (2~) ÷, then [it] <" is (t,,~)-extendible. 

Third, we shall prove a lemma which shows that the question of whether [p.]<~ 
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is (r, to )-extendible is equivalent to a problem in polarized partition relations 

[20]. 

LEMMA 11. (~)---'(~)2 implies [/x] <~ is (K,A )-extendible and the converse holds 

when A = to. 

PROOF. Let {A~:s c ~ K }  be subsets of /z. Let A C K z / z  be defined by 

(~, a )  E A if and only if a E A~. The polarized partition relation can now be used 

to find X E [ r ]  ~ and Y E [/~]v such that either X x Y C A or (X x Y) N A = 0 .  

In the first case, O {As : s c E X} D Y and hence {~ - A~ : s c E X} can be extended 

to a tr-ideal which extends [/z ]<~. If (X x Y) O A = O, then {A~ : ~ E X} can be 

extended to such an indeal. 

The second statement follows from the fact that if A C K x/z  then extendibil- 

ity can be applied to {Ae : ~ E r} where Ae = {~ E p :(~, a )  E A }. Now (K, to)- 

extendibility yields X E [ r ]"  such that either the set of sets indexed by X 

or the set of the complements can be extended to a (r-ideal. Either 
X x ( n {A~ : s c E X}) or X x ( n {~ - As : s c E X}) will satisfy the polarized parti- 

tion relation. 
Fourth, we shall prove a lemma which shows that a saturation property of 

Laver [13] implies extendibility. 

LEMMA 12. (r,A,(o)-saturated ideals are (r,A)-extendible. 

PROOF. Suppose that I is an ideal on/x  and that I is (K,A, to)-saturated. Let 

{As : ~: E r} be subsets of/x. If )t of these sets belong to I then we are done, so we 

may assume that none of these sets Ae belong to I. An application of the 

saturation property yields the result. 

Section Two: [+o,] <+' 

With these lemmata, we begin with an analysis of the specific question: When 

is [to1] <'' (r, )t )-extendible? 

There is the strongest possible negative consistency result: 

THEOREM 4 (Hajnal, Juhasz). It is consistent with any cardinal arithmetic that 

[tOm] <~' is not (2% to )-extendible. 

By Lemma 10, this is the best possible result. It was obtained by Hajnal and 

Juhasz [8] who showed more: that it is consistent with any cardinal arithmetic 

that [2'°] <~' is not (2% to )-extendible. 
Prikry and Devlin later obtained the same result in L [17]: 
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THEOREM 5 (Devlin, Prikry). V = L implies [to1] <', is not (2"', to)-extendible. 

In fact, Silver's W(K) implies that [tot] <'' is not (r, to )-extendible and so it is 

not possible to prove that it is consistent with 2"0= ~t~ that [tot] <`' is not 

(to2, to)-extendible. 

Cardinal arithmetic alone does imply a negative result of Sierpinski: 

THEOREM 6 (Sierpinski). CH implies [tol]<~, is not (tol,to)-extendible. 

We conjecture that there are no limitations on a positive consistency result 

when A = to beyond that of Theorem 6. 
One way of obtaining these results is the following: 

LEMMA 13. Let B E [',2]L If there exist g~ :2~--~2 (a E to 0 such that, for any 
F E [ B ]  ~, there is aE to t  such that, ]:or any /3>=a, g~ is not constant on 
{]:[/3 : rE  F}, then [tot] <`' is not (r, to)-extendible. 

PROOF. Let Af = {a E tot :g=(]:[a) -- 1} ( / E  B). Claim that [tot] <'~, cannot be 

extended by any infinite set of Ac's. If not, let G D [tot] <`' measure Af ([ E F) 
where F E [B] ' .  We can assume that either Af E G (rE F) or t o t -  Af E G 
( / ~ F ) .  There is a Etot  such that, for any /3_>-a, g~ is not constant on 

{]:t/3:]:EF}. If /3E N { A r : f E F } ,  then ge0q/3) = 1 (f E F). If 

/3 E f ) { to t -A f : ] :EF} ,  then g~(fr /3)=0 ( / E  F). In either case, /3 < a  and a 

countable intersection of elements of G is contained in a which is a contradic- 

tion. 

PROOF OF THEOREM 4. Add 2 "o Cohen reals to any model V of set theory to 

get generic objects go :2 ~ --*2 (a E tot), let B = (',2 fq V) and apply Lemma 13. If 
F u [B] ' ,  then F is in an extension of V obtained by adding countably many 

generic objects. There is a E to~ such that, for any /3 _->a, {[[/3 : f E  F} is an 

infinite set in that extension. No ga is constant on an infinite set over which it is 
generic. 

PROOF OF THEOREMS 5 AND 6. Silver's axiom W(r )  says that there is 

B ~ [',2]* and a function S with domain tot such that 

(1) for each a E tot, S (a )  is a subset of [a2]" of cardinality to, 

(2) for each F E [ B ] ' ,  there is a E tot such that, for each /3=>a, 

{f[/3 :f  E F} E S(fl). 
Construct each ga by induction to be constant on no element of S(a)  and 

apply Lemma 13. CH implies W(tot) and V = L implies W(~2) while the 

consistency of the failure of W(to2) with CH can not be proved without assuming 
the existence of an inaccessible cardinal. 



214 J. STEPRANS A N D  W. S. W A T S O N  Isr. J. Math. 

It is reasonable to ask whether Theorem 6 can be proved without assuming 

CH or, perhaps, by assuming only 2",' < 2",. The following theorem provides the 

answer to these questions. 

THEOREM 7 (Miller and Velickovic). It is consistent with any cardinal 

arithmetic in which CH fails that [o9,]<~, is (o9,og)-extendible. 

PROOF (see p.289 AI0 of [12]). Start with any model V and iterate C.C.C. 

forcing with finite supports o92 times to form M~ (a < o92)- U,, will be an 

ultrafilter on P(og) in M~. M,+~ is obtained by adjoining to M~ an a~ Co9 with 

(Vx E U~ , ) l a~ -x l<w.  Claim that [og,l is (og, og)-extendible in V[G]. Let 

{A° : n E o9} be a family of subsets of o91. {A, : n E o9} can be coded by a subset of 

o9~ and so there is a E o92 such that {A, :n E o9} E Mo. Let {B, :31E o91} be a 

family of subsets of o9 defined by n E B, iff 7 E A,. U,, measures each B,. We 

assume that, for each 3, • o9~, B~ E U~. Therefore, for each "r E oJ~, a~ - B, E 

[o9]<~. There is F E [o9]<~ and X E [o9,]~, such that y E X implies a~ - B, E F. 

For each 3' E X, B, D a~ - F and so, for each n E o9 - F, A .  D X. 

This yields an application to set-theoretic topology which requires the 

following definition: X _C ~,2 is an HFD if and only if for each X E [X] "° there is 

~: E o9~ such that for each f E U {"2 :F E [o9,- st] <'o} there is g E X such that 

fC_g. 
The next proposition shows that it is possible to obtain a model where 2 '̀ 0 < 2", 

and there is no HFD. (It is still not known whether 2 "o < 2", implies that there is 

an S-space.) 

THEOREM 8. If [o9,1<"' is (K, llo)-extendible then there is no HFD of size K. 

PROOf. Let {f~ : 17 E K} C_ ~'2. Choose J a g-ideal extending [o9~]<"' such that 

there is some F E [K]"o such that for s ¢ E F, {f~{0}, f~{1}} fl J #  0. Without loss of 

generality assume that for s ¢ E F, f~'{0} E Jr. Since J is countably complete, for 

each /3 E o~ there is a E o91 - /3  such that 

a E fq {/~'{1}; ~ E F}. 

Hence {f~:~ E F} is not an HFD and so neither is {fn ;'q E K}. 

Since W(K) implies the failure of the (o92,og)-extendability of [o9,]<~, and the 

consistency of the failure of W(o92) requires an inaccessible cardinal, it is 

reasonable to conjecture that the existence of an inaccessible cardinal implies 

the consistency of the (o92,og)-extendibility of [~o~] <",. The role of o92 is crucial 

since it will be shown in Theorem 12 that the (o93,og)-extendibility of [o9~]<~, is 

consistent with any cardinal arithmetic and that large cardinals are not needed 



Vol. 54, 1986 EXTENDING IDEALS 215 

for this result. One might also ask whether the fact that [to~]<~, is (to~,to)- 

extendible implies the consistency of a large cardinal. 

The polarized partition relation translation of the question of the (to_~,to)- 

extendibility of [tot] ~ ,  was asked by Erdos, Hajnal and Rado in 1965 [7] and 
with G C H  by Laver in 1980 [14]. 

These positive consistency results do not differentiate between (to, to)- 

extendibility and (to~, to)-extendibility, on the one hand, and (to2, to )-extendibility 
and (2~,,to)-extendibility, on the other hand. The first is, surprisingly, not a 

coincidence: 

THEOREM 9. [to,]<~' is (to, to)-extendible if and only if [to~]<~, is (to,,to)- 

extendible. 

PROOF. We prove oo ,~ direction. Let {C, : n E to} be a counterexample to 

(to, to)-extendibility and define B~ = {n C to : ~ E A,}. Also, let {Ao : a E toj} be a 
strictly increasing (mod finite) sequence of subsets of to and choose {[~ : a C to~} 
to satisfy the conclusion of the following lemma: 

LEMMA 14. If  {A .  :a E tot} is a strictly increasing (modulo finite sets) 

sequence of subsets of to then there is a sequence {f~ : a E tot} such that: 

(0) if a E to, then f~ : to --> to, is l- l ,  

(1) if a ~ 18 E to, then a C_ f " A .  C_ f ' ~ ,  

(2) if a E/3 E tot then there is k E to such that f~ [(A.  - k )  = f~ r(A~ - k ). 

PROOF. If {]'8 :/3 < a} are defined, define {f~(n): n E to} by induction upward 

on k E A . .  List a = { a ~ ; i E t o } .  
Let P, be the condition: If there is i =< n such that k E Ao,, then let i be 

minimal and let f , ( k  )=  / , , (k  ). 

Let Q be the condition: let i be minimal such that [ , ( l ) ~  a~ (l < k )  and let 
[ , ( k )  = a~. The induction priority is to apply Pj to all integers between ki-t and 

the least kj > k~-t to which it does not apply and to apply O to kj. 
Condition Q is applied infinitely-many times because {A, : a E toi} is strictly 

almost increasing and so each P, is applied. For each n, there is m E to such that 

{f~,[A~, - m :i <- n} are compatible. Therefore, for k > max{m,k,}, when f~(k)  

is decided, P, applies where j => n. If k E A,., then letting i be minimal such that 
k E A~,, k _-> m implies 

f . . ( k ) = f ~ ( k ) .  

Extend [5 to domain to arbitrarily. 
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CONTINUING THE PROOF OF THEOREM 9. For /3 E to,, let Xo = 

{a~to~: f ;~( /3)EB~}.  We show that {X~:/3Eto~} is a counterexample to 

(to~,to)-extendibility. Suppose not, that F E [tot] ~ and I (1 {Xo :/3 E r}[-- to, (for 

example). Let M { X ~ : I 3 E F } = S .  Then a ~ S  and / 3 E F i m p l i e s  a E X ~  and 

f : ' ( /3 )E  B~ and a E Cf:,~. Let a o = i n f ( S - F ) .  By (2), /~,(A~,)DF. Let 

f~, fq (to × F) = f. For each a E S - F, f~ almost contains f There is an uncount- 

able T C S - F and a finite 0. C f such that a E T implies f~ D g - 0.. Then a E T 

and/3 C rng(g) implies a E C(g - 0")-'(/3) and so tq {C, : n E dom(g - 0")} D T. 

This proof shows that the existence of a countable HFD implies the existence 

of an uncountable HFD, answering a question of Juhasz. 

THEOREM 10. If there is a countable HFD, then there is an uncountable HFD. 

PROOF. The proof is similar to the proof of Theorem 9. 

Note that the translation of this result into polarized partition relations is a 

new result. 
What about positive consistency results when A is uncountable? 

One positive consistency result is a consequence of Lemma 12 and a result of  

Laver [13]: 

THEOREM 11 (Laver). If it is consistent that there is a huge cardinal, then it is 

consistent that GCH holds and [to~]<~' is (to2, to2)-extendible. 

More generally, if it is consistent that there is a huge cardinal and if r is a 

regular cardinal, then it is consistent that GCH  holds and [r+] <K÷ is (r++,r++) - 

extendible. 
A positive consistency result without the assumption of large cardinals is: 

THEOREM 12. If N3 Cohen subsets of to1 are added to a model of GCH, then 

[to1]<', is (to3,to3)-extendible. 

PROOF. Let P = Fn(to3,2,tol). CH implies that no cardinals are destroyed in 

the extension V[G]. Let r be a name, as defined in [12], and p a condition in G 

such that plF"r is a sequence of subsets of to~ indexed by to3". Let  {n~ : a E to3} be 

such that 
(1) For each a E to3, no = U {{3'} x A,(3 ' ) :  31 E to1} where, for each 3' E to~, 

A~(3') is an antichain in P, and 

(2) p IF"z = {no : a E to3}". For each a, let E~ = U {dom"A~ (3'): 3' ~ to~}. Now 

IE~ I -  -< N~ and so 2 ~' = to2 implies that we can assume, without loss of generality, 

that {E= : a E to3} is a A-system with root A~ We can assume, without loss of 
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generality, that A = 0 (letting Pa = Fn(A,2,to,) and P-a = Fn(to3 - A,2,to,), IAI =< 

N~ implies that V [ G  (q PalI=GCH; we can modify each A s ( y )  to be an antichain 

in P ,  by subtracting conditions which are incompatible with G f)Pa and 

restricting each remaining condition to tot - A; and so work in V [ G  fq Pa] with 
P_~). We assume, without loss of generality, {no : oe E w~} are isomorphic. That 

is, letting ~b~ : Y,, ---+ co , be an injection, for each a E to3, we assume that 

p • A , ( 7  ) if and only if po tb~ 'o~  E A~(3') whenever a Eto~, /3 E co3, and 

3, E co~ (there are •2 possibilities). If there exists q _-< p, a ~ to~ and B E [to~]~' 

such that qlk"B C_ n~" then assume, without loss of generality, that dom(q)C 

dom(p) U E~. Any condition below p may be extended to force B C n~ and this 

implies that p forces that, for N3-many/3, B C n~ as required. Otherwise p forces 

that no n~ contains an uncountable set in V. That is, for each q -<_ p and a E to~, 

there is /3(a ,q)  such that, for each 3 '> /3(a ,q) ,  there is r<=q such that 

rlk"3'~ n~" (we can assume, without loss of generality, that dom(r )Cdom(q)U 

£o). Fix ~E[to~] ~. Whenever /3Eto~ and q<=p, we can find 3 '>/3 such that 

3' > /3 (a ,q )  for each a E ~ ,  and so there is r_-<q such that 
rlk"3' @ N{to~-n~ :a  Ef l}" .  This implies that piP'[ f-I{tot-n~ :a  EI)}I = N," 

as required. 

Since Theorem 9 shows that as far as [tot] <~, is concerned, there is no 

difference between (o~,to)-extendability and (to, to)-extendability, it might be 

tempting to conjecture that there is also no difference between (r, to)- 

extendability and (K+,to)-extendability, or perhaps even between (2",,to)- 

extendability and (to, to)-extendability. The next result shows that this is not so. 

THEOREM 13. It is consistent with any cardinal arithmetic in which 2 ~ = to~ 

that [to~]<~, is (to3, to )-extendible but not (to2, to )-extendible. 

PROOF. Add Cohen subsets of to~ to a model of V = L, and apply Theorems 5 
and 12. 

B. Velickovic has noted that by starting with a model where W(K) hold and 

adding K + Cohen subsets of to~, it is possible to get (K+,to)-extendability without 
(K, to )-extendibility. 

QUESTION 4. Does the (to2, to2)-extendibility of [to,]<~, imply the consistency 
of large cardinals? 

Establishing the consistency of (co,, to0-extendibility seems to be difficult. 
Todoffzevi6 has noticed the following: 

THEOREM 14 (Todor~zevi6). [coil <~' is (to~, toO-extendible iff t o ~  (to~;tol)~. 
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We need a definition to unders tand this: ~o,----~ (toL; to,)~ if and only if. for every 

F : [to,]"--+ 2, there  are uncountable  subsets of to,, A and B and i E 2 such that, if 

a E A and /3 ~ B and o~ > /3  then F({a,/3}) = i. 

PROOF OF THEOREM 14. First suppose that to,--,(w, ;to.)~. Given {A~ : a  E tot} 

subsets of tol, define F({a,/3}) to be 1 if c~ E A~ and 0 otherwise.  Then  find A, B 

and i satisfying the definition of the parti t ion relation. If i = 1, then for any 

y E to,. A - 7 C (1 {At :/3 E B M 7} and hence {At :/3 E B} genera tes  a counta-  

bly comple te  filter. If i = 0 ,  then { t o , - A , : / 3 E B }  generates  a countably  

comple te  filter. 

Now suppose that [to,]<~, is (to, , to,)-extendible and let F:[to,]2--+2. Let  

A~ = {/3 ~ to, : F({a,/3}) = 1}. Let  /~ ~E [to,]~, be such that ei ther  {A~ : a ~E/~} or 

{ t o , - A ~  : a  @/~} generates  a countably complete  filter. Define B E[ /~ ]  ~',, 

A C[to , ]  '~, inductively so that ~ E A  implies a C M { A o : / 3 E B f - l a }  (or 

a E f q { t o , - A o : f l E B n a } ) .  If a E A ,  / 3 E B  and a > / 3  then / 3 E A ~  (or 

/ 3 ~ A ~ )  and F({a,/3}) = l (or F({a, /3 }) = 0). 

In D e c e m b e r  1984 Todorcevic  announced:  

THEOREM 15 (Todo reev i c ) (ZFC) .  fro,] <~' is not (to,,to,)-extendible. 

There  are many o ther  open  questions on the (K, A )-extendibili ty of [to,]<~' 

when A is uncountable  but we content  ourselves with: 

QUESTION 5. Does  the fact that fro,] <~' is (to2,w~)-extendible imply that [tol] <~, 

is (to,, to2)-extendible? 

Section Three: Arbitrary ~-ideals 

Moving from the specific to the general ,  we cont inue with an analysis of the 

(r ,  A )-extendibili ty of arbi t rary tr-ideals. There  are no positive consistency 

results here  at all! 

THEOREM 16. Z F C  implies that there is a tr-ideal on 2" which is not (2 t2"), to)- 

extendible. In fact a stronger result is true : Z F C  implies that, for each cardinal r 

which is such that r ~ = K, there is an ideal on K which is not (2 K, to )-extendible. 

PROOF. K ~ = r implies that there  is D C 2  (2~) which has size K and is a dense 

subset when ~2"~2 has the G~-topology [5]. 

Since every  set of measure  0 is conta ined in the countable  union of sets of the 

form {f E ~2~2 : f  D g} = [g], where g is countable  and infinite, a diagonalizat ion 

a rgument  shows that if X has measure  zero then there  is a countable  and infinite 
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g such that X O [g] = Q. Since [g] is a G~-set it follows that D cannot have 

measure zero. Therefore, if I = {X N D : X C2 ~'-'~ and X has measure zero}, then 

I is a countably complete ideal on D. Let A~, = {rE D : f ( a )  = i} for a E ~2 and 
i ~ 2. By the density of D, a ~/3 implies A ~ ~ A ~. For any subset F @ [2" ]~ and 

h:F---~2, N { A . ~ : T C ~ F } C I  and so { A ° : a E 2  ~} witnesses that I is not 

(2 ", w )-extendible. 

There are at least two possible directions in which to continue: 

First, we can examine the (K, A)-extendibility of specific ideals such as [~ ]<" 

and, second, we can examine the (K, X )-extendibility of restricted classes of 

ideals. 

The second of these directions can be realized in the investigation of two 

questions. The first is motivated by trying to avoid Theorem 16 by restraining the 

cardinality of the underlying set: 

(1) When is an arbitrary o--ideal on a set of cardinality less than 2 ̀0 , 

(K, A )-extendible? 

The second is motivated by trying to avoid Theorem 16 by prescribing a 

greater completeness. 

(2) When is an arbitrary Ix-complete ideal (K, A )-extendible? 

Section Four: [2~'1 <2~' 

With the first direction in mind, we conclude with an analysis of the specific 

question: When is [2~'] <2"' (K, A )-extendible? 

To simplify the discussion, we avoid the pathology of cardinals of countable 

cofinality by assuming the singular cardinals hypothesis. 

First, cardinal arithmetic implies a positive result: 

LEMMA 15. I f  2~<  2 ~', then [2~,] <2~' is (ix, tx)-extendible whenever Ix < 2 ~'. 

Second, when 2 ~ = 2  ",, we have the strong negative consistency result 

mentioned in the remarks following Theorem 4: It is consistent with any cardinal 

arithmetic in which 2 ~ = 2 ~, that [2~,] <2~' is not (2~,,~o)-extendible. 

This is not the strongest possible negative consistency result and so we have: 

QUESTION 6. Does ZFC imply that [2°"] <2~' is (2~"),o~)-extendible? 

Third, when 2 ~ =  ~o~ and 2 ~' = ,02, we have the weak negative consistency 
result: 

THEOREM 17. It is consistent with 2 ~ =  o9, and 2 ~, = o~2 that [2~'] <2'' is not 

(2 ~,, 2",)-extendible. 
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This follows from the following more general result which is new when 
2 ~ <2~,: 

Suppose K and a are regular cardinals and K < a. Then it is consistent with 
ZFC that [K+]<K is not [K+, K+]-extendible and 2"° = 2 2-0 = K and 2 K = a. 

PROOF. Let VD"MA and 2"° = K and 2" = a " .  Define a partial order P by 
P P .  p ~ P  if and only if p = ( A  ,{[~,a EAP},eg p) where 

(1) a P 

(2) if a E A" then f~:AP---~2; 

(3) Iqe l<K; 
(4) if (g, x )  e g~ 

(a) the order type of D(g) is a countable limit ordinal, 

(b) D(g)C_A ~, 

(c) g"D(g)C_ 2, 
(d) U {(f~)-l{g(/3)}; /3 E D(g)} = A P - X, 

(e) X C_ ( U D(g)) O A P. 

The ordering on P is defined by p < q if and only if: 

(5) A" D a q ;  
(6) ~P _D c¢.; 

(7) if a G A"  then [~rA q =f~. 

Clearly, (P, =< ) is K-closed. Since, in the ground model, 2" = K, the A-system 

lemma can be applied. Hence, to show that ( P , = )  satisfies the K+-chain 
condition, it suffices to show the following: 

(8) if ~:AP--->A" is an isomorphism of p and q such that dPrA p n A q is the 

identity map and U(A p n A  q)E O(A p - A  q)and U A  p ~  n A  q - A  p 

then p and q are compatible. 

In order to prove (8) suppose that p, q and • are given. Let A '  = A p U A q and 

g ' =  ~gP U gq. Functions {jC,;a C A ' }  must be defined so that ['~:A'--->2 and 
r p ¢ 

[~ D [~ O [ ]  for each a G A . Furthermore, the function ["  must be defined so 

that if (g ,X)E  qgPAgq then U {(f;)-*{g(ot)};a ~ D(g)} = A '  - X. Note that this 

will automatically hold if (g,X) is in qgP N cgq. 

To construct the functions [ ;  let 

~ D ( g ) - A  q if ( g , X ) E g P - g  q, 
S(g,X)  = I 

I . D ( g ) - A "  if ( g , X ) E g " - g  ". 

Note that if (g,X)ECd~Ag q then D ( g ) ~ A P n A  q for otherwise, by (4e), 

D(g)O X C_A ~ O A q and hence, by the properties of ~ ,  (g ,X)E  cop O @q. 

Therefore, by (4a), I S ( g , × ) ]  = .0. 
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Now let A = (A q x (A p - A q)) U (A p × (A ~ - A p)) and let Q = 

u {r2; F C [A]<"°}. Under  reverse inclusion O has the countable chain condition. 

therefore,  since MA holds, it is possible to find h C ^2 such that: 

(9) if a C A p and ( g , X ) C  U q then there is/3 C S ( g , X )  such that h(a, /3)  = 

g(/3); 

(10) if a C A  q and ( g , X ) C  U p then there is/3 C S ( g , X ) s u c h  that h(a , /3)  = 

g(/3). 

Now define 

I f [  U {(a, h(a,/3));  a C A q - A ~ } 

(11) f~ = J f ~ U  {(a, h(a,/3));t~ C A e - A q } 

[ f~ U f~ 

i f /3 C A  r - A  q, 

if / 3 C A q - A  p, 

if / 3 C A P O A  q 

Let r = (A',{f '~;a E A ' } ,  U'). It suffices to check that (4d) is satisfied by r. Let 

( g , X ) E  U q - U p and a E A  r - X .  If a E A  q then there is 6 C D ( g )  such that 

a C (f~)-l{g(t~)} and hence a C (f~)-~{g(~)}. If a C A p - A  q choose, using (9), 

/3 C S ( g , X )  such that h(a , /3 )=  g(/3). Then f '~(a)= h(a, /3)  by (11) because 

a C A p - A L  Hence a C (f~)-l{g(/3)}. A similar argument for the case when 

(g ,X)  @ U p - U q finishes the proof that (P, =< ) satisfies the K +-chain condition. 

Now let G be (P, < )-generic over V. Let  

f~ = U {f~; p C G a n d a  C A r } .  

It will be shown that {f:~{1};a C K ÷} witnesses that [K+] <" is not (K+,K÷) - 

extendible. Suppose that p C P and plF"X C [K÷] "÷ and g C x2".  It must be 

shown that there is q =< p and F C [K÷] "o and Z C [K+] <K such that 

q IF " Z  U ( U {f: '{g(a)}; a C F}) = K ÷ and F C X " .  

To this end, use the K-closure of (P, =< ) and the fact that p lb"X C [K÷] "÷'' to find 

r =< p such that: 

(12) if a C A  r then rlF"a C X "  or rU-"af~X";  

(13) {a C A '  ; r lb"a C X"} is cofinal in A '  ; 

(14) if r lk"a C X "  then r l k " g ( a ) = O "  or r l k " g ( a ) =  1". 

Using the to~-closure of (P, < ) it is possible to insist that the order  type of A '  is a 

limit ordinal of countable cofinality. 

Define a function g* so that D ( g * )  is a countable and cofinal subset of 

{a C A '; rn-" a C X " }  and such that if a C D ( g  *) then rD-" g (a  ) = g*(a  )". Let 

q = (A ',{f'~; a E A r}, U'  U {(g*,A ')}). 
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It is easy to check that q E P and q < r<p .  But, since ( g * , A ' ) E  c¢,, it follows 

that 

qlF"A' U ( U {f~l{g(a)} ;a ~ D(g*)}) = K +'' 

Furthermore, qlF"D(g*)C X "  and hence q is the desired condition. 

This leaves: 

QUESTION 7. Is it consistent with any cardinal arithmetic that [2~,] <~' is not 

(2 ~,, 2~,)-extendible? 

And, for example, in general, 

QUESTION 8. Does ZFC imply that [r]  <~ is (T, 2" )-extendible whenever 
2- >2~,? 

Fourth, we have some positive consistency results: 

THEOREM 18 (Laver). I f  it is consistent that there is a huge cardinal, then it is 
consistent that GCH holds and [2~,] <2~' is ((2~O+,(2~,)*)-extendible. 

THEOREM 19. I f  it is consistent there is a weakly compact cardinal, then it is 
consistent that CH holds and [2~',] <2~' is (2~,,2~,)-extendible. 

PROOF. Let Pe = LJ {r2;F E [~:]-~"°}. The ordering on PC is reverse inclusion. If 

V ~ " 2 "  = l, l f '  and G is P,-generic over V, where K is weakly compact, then 
V[G]~"2",  = K and 2"o=Nf  '. It suffices to show that [2~,] <2'' is (2",,2",)- 

extendible in V[G]. Now suppose that V[G]~"{A~ ;a E r} witnesses that [K] <* 

is not (K, r)-extendible". It will now be shown that there is C E [r]  ~ in V[G] 
such that C is closed under increasing sequences of uncountable cofinality and if 

a E C and c f ( a ) >  w then {As f'l a ;/3 E a} has the following property: 

there is B C a  such that for each F E [a] "o, 

(1) ( U { a - A ~ ; T E F - B } ) U ( U { A ,  Na;TEFNB})e ' /3 foranya- /3 .  

To see this define h : K x [r] 'o x [K]"o---~ K such that h(~',B °, B ~) is a member of 

(r  - ~) - (( U {a - As ;/3 E B°}) U ( U {a f3 A.  ;/3 ~ B ~})) whenever 

r - ; ~  (U {a - A~;/3 E B°})U ( U { a  n A~;/3 E B'}). 

Let C = {a E r ;cf(a) > to and h"(a x [a ]"o x [a ]"o) _C a }. Then if a E C define 

B = { ~ E a ; a ~ A ~ } .  To see that B has the desired property suppose that 

F E [ a ]  "°. Let /3 E a. Then, by the definition of B, 

/3~ (U {a - A~;I '  E r -  B})U (U(a n A~;7 E rn B}). 
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Then, by the definition of C, 

h( /3 , r -  B, r n  B ) ~  a 

and h ( /3 ,F -  B,F M B) does not belong to 

( U { o ~ - A , ; T E F - B } ) U ( U { ~  n A , ; 7 ~ r n B } ) U / 3  

which shows that (1) holds. 

Since P. satisfies the N2-chain condition, C contains an unbounded set in the 

ground model which is closed under increasing uncountable sequences. Hence, 
without loss of generality, it can be assumed that C E V. Let A~ C_ K × [p.]<'2 be 

a name for A~. Because of the N2-chain condition it can be assumed that 
A s C V.. Then 

(V.,P.,{A__~ ;/3 E K})I,=(VX C_ K X [P.l<"q 
(2) 

(VY C_ * x [P.]<*0[(Vp E P.)(pIFp"X E [*]*, Y E[K]*  and X n Y = 0") 

implies (3F ~ [K]"o)(3q ~ P.)( : ] ' r  e K)(Vn e ,< - ~,)(3/3 er)(q <-_p and 

qJF,. "re_ X U Y and ( r /EA~ if/3 e~ X)and (r/~ A~ if/3 E Y)'))] .  

It is easy to check that the expression in (2) involving IF can be replaced by first 
order expressions in the language of the model 

(V,,P,,{A_.2;/3 ~ K}). 

Hence the entire expression in square brackets is first order with respect to this 

language. Hence, since K satisfies the Illl-reflection property, it is possible to find 
A E C such that 

( V,, PA, {A._£~ F1 (A x [Px ]<"0;/3 e A })I=(VX C_ h x [P, ]<"0 

(V Y C_ A x [Pa ]<"0[(Vp E P~)(pIFp, " X  @ [A ]*, Y E [A ]* and X f3 Y = 0") 

implies (::IF E [h ]"o)(::lq E p~)(:ly E A)(V'r/E A - 7)(3/3 E r ) (q  _-< p and 

q It-p~ "F C X U V and (r t E A,  n (,~ x [p~ ]<.2) if/3 E X)  and 

(rl ~ A~ n (,~ x [p, ]<",) if/3 E Y)"))]. 
i 

In particular 

(3) V[G fq P~]I="{A~ fq A ;/3 E ,~} witnesses that [h] <~ is not (A, h )-extendible". 
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But by (1) 

V[ O fq P~ ]I="(::IB C_ A ) (VFE [A ]",,)(V/3 E A )(( U {A - A~ ;3' E F - B }) 

U (U{,~ O A ~ ; y  E B  n r} ) )~  A - / 3 "  

But since P. is countably closed and satisfies the 1,12-chain condition it follows 
that 

t V[G n P~ ]l="there is a P, -name such that 

(4) IIFp~ "(VF E [A ]"") (Vfl E A )(( U {A - A~ ;3' E F - B}) 

U (U{)t N A~;3' E B n r})~.~ - /3 ) " .  

But V[G N P, ]~"2 "o = N~ and 2", = ,~". Hence 

V[G n P, ]~"P ,  = {O~;~? E o,} where each O~ is ~r-directed". 

Therefore there is, in V[G n P~], B*E [A] and ~ E o)j such that 

V[G n P~ ]l="(Vfl • B*)(:tpo E O~)(polFe~"fl E B"orpt~ IFp. " t i f f  B")" .  

Now let X = {/3 E B*;polFp,,"/3 E B"} and Y = {/3 E B*;p~lFp,"/3ff B"}. 

Clearly {X, Y}C_ V[G (-1P,] and X Cl Y =0 .  But by (3) there is F E  [B*]"o and 
~¢ C .~ such that 

( U { , ~ - A , ; 3 ' E F n X } ) U ( U { , ~ ,  n A , ; y E F n  Y})_D,~\~. 

Choosing q E PA such that (VA E F)(q _D p,)  yields a contradiction to (4). 

OUESTION 9. Does the consistency of the (2~°,,2'°,)-extendibility of [2"'] <2°' 

imply the consistency of the existence of an inaccessible cardinal? 

Todor~evid has subsequently proved in [19] that Theorem 19 can be obtained by 
adding weakly compact many Sacks subsets of ~o~ (see comment at the end of 
claim 3 in section 2 of his paper). 

Todor~evi~ has also obtained (see property (3) of section 2 of [19]) by adding 

weakly compact many Sacks reals: 

THEOREM 20 (Todor~evi0. If it is consistent that there is a weakly compact 
cardinal, then it is consistent with 2 ~ = 2"' that [2",] <2"' is (2",,T',)-extendible. 

PROOF. (Let A = 2 where K = 2 ~ in aforementioned property (3).) 

COROLLARY. If it is consistent that there is a weakly compact cardinal, then it is 
consistent that every 2%completable ideal is (2~',T")-extendible. 
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PROOF. Let I be an ideal and let {A e :{: E 2  ~,} witness that I is not 

(2~,,2~,)-extendible. Whenever  X and Y are disjoint countable subsets of 2% let 

B ~ E  I be such that 

BrU U{At's~EX}U U{(U I) -Ae:~E Y}= O l 

if possible. Then {Ae "~: E 2 ~,} witnesses that the ideal generated by the B~ is not 

(2%2'°,)-extendible. We assume therefore that I has 2~'-many generators.  There 

is a set B of positive measure which is such that {B M A [ < 2 ~, for each A E I. 

An application of Theorem 19 to the restriction of I to B completes the proof. 

LEMMA 16. If  each t_t-completable ideal with K~-generators is (K,a)- 

extendible, then every tz-completable ideal is (K,h)-extendible. 

THEOREM 21 (Kunen). It is consistent with any cardinal arithmetic that 

[2~'] <2~' is (to, to)-extendible. 

PROOF. (See p. 289 A I 0  of [12]). It is consistent with any cardinal arithmetic 

that there is an ultrafilter U on to of character to,. Let {A., : 3' E to,} be a base for 

U. Let {B° : n E to} be a family of subsets of 2 ~,. Let {C, : a G 2 ~,} be a family of 

subsets of to defined by n E Ca itt a E B,. Assume that there is X E [2~,] 2~' such 

that a ~ X implies C, E U. cf(2 ~,) > to, implies that, without loss of generality, 

there is 3' E to~ such that ,~ E X implies Ca D A,. For each n E A:,, B, D X as 

required. 

The authors thank B. Veli(zkovi/:, A. Miller, S. Todort3evi6 and the referee for 

enabling us to renumber  many questions as theorems.  

We conclude with the general question of "third order"  extendibility: When 

does a tr-ideal I have the property that any family of r sets has a subfamily of 

a -sets, any /z -many  of which can be measured by a o'-ideal which extends I?  
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